The Metric Dimension of the Composition Product of Graphs
نویسندگان
چکیده
For an ordered set W = {w1, w2, . . . , wk} of vertices and a vertex v in a connected graph G, the ordered k-vector r(v|W ) := (d(v, w1), d(v, w2), . . . , d(v, wk)) is called the (metric) representation of v with respect to W , where d(x, y) is the distance between the vertices x and y. The set W is called a resolving set for G if distinct vertices of G have distinct representations with respect to W . The minimum cardinality of a resolving set for G is its metric dimension. In this paper, we study the metric dimension of the composition product of graphs G and H, G[H]. First, we introduce a new parameter which is called adjacency metric dimension of a graph. Then, we obtain the metric dimension of G[H] in terms of the order of G and the adjacency metric dimension of H.
منابع مشابه
On two-dimensional Cayley graphs
A subset W of the vertices of a graph G is a resolving set for G when for each pair of distinct vertices u,v in V (G) there exists w in W such that d(u,w)≠d(v,w). The cardinality of a minimum resolving set for G is the metric dimension of G. This concept has applications in many diverse areas including network discovery, robot navigation, image processing, combinatorial search and optimization....
متن کاملA CHARACTERIZATION FOR METRIC TWO-DIMENSIONAL GRAPHS AND THEIR ENUMERATION
The textit{metric dimension} of a connected graph $G$ is the minimum number of vertices in a subset $B$ of $G$ such that all other vertices are uniquely determined by their distances to the vertices in $B$. In this case, $B$ is called a textit{metric basis} for $G$. The textit{basic distance} of a metric two dimensional graph $G$ is the distance between the elements of $B$. Givi...
متن کاملThe metric dimension and girth of graphs
A set $Wsubseteq V(G)$ is called a resolving set for $G$, if for each two distinct vertices $u,vin V(G)$ there exists $win W$ such that $d(u,w)neq d(v,w)$, where $d(x,y)$ is the distance between the vertices $x$ and $y$. The minimum cardinality of a resolving set for $G$ is called the metric dimension of $G$, and denoted by $dim(G)$. In this paper, it is proved that in a connected graph $...
متن کاملExtended graphs based on KM-fuzzy metric spaces
This paper, applies the concept of KM-fuzzy metric spaces and introduces a novel concept of KM-fuzzy metric graphs based on KM-fuzzy metric spaces. This study, investigates the finite KM-fuzzy metric spaces with respect to metrics and KM-fuzzy metrics and constructs KM-fuzzy metric spaces on any given non-empty sets. It tries to extend the concept of KM-fuzzy metric spaces to a larger ...
متن کاملSolis Graphs and Uniquely Metric Basis Graphs
A set $Wsubset V (G)$ is called a resolving set, if for every two distinct vertices $u, v in V (G)$ there exists $win W$ such that $d(u,w) not = d(v,w)$, where $d(x, y)$ is the distance between the vertices $x$ and $y$. A resolving set for $G$ with minimum cardinality is called a metric basis. A graph with a unique metric basis is called a uniquely dimensional graph. In this paper, we establish...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011